首页 首页 人工智能 查看内容

深度研究 AI 芯片产业应用发展

木马童年 2019-7-4 20:15 28 0

一、 人工智能芯片发展现状及趋势 1、深度学习算法对芯片要求更为苛刻,通用 CPU 性价比相对较差 经历了 60 多年的起起伏伏之后,人工智能终于迎来了第三次爆发。第三次爆发的核心引爆点是深度学习算法的出现,但 ...

一、 人工智能芯片发展现状及趋势

1、深度学习算法对芯片要求更为苛刻,通用 CPU 性价比相对较差

经历了 60 多年的起起伏伏之后,人工智能终于迎来了第三次爆发。第三次爆发的核心引爆点是深度学习算法的出现,但其背后的支撑是数据和算力。对整个 AI 行业来讲,算法、数据和算力三大基本要素中,数据尤其是海量数据的获取和处理难度在下降,算法也在深度学习模型的基础上不断优化,而负责将数据和深度算法统一协调起来的芯片能否获得大的飞跃,成为市场关注的焦点。

深度研究 AI 芯片产业应用发展

深度研究 AI 芯片产业应用发展

深度学习算法对芯片性能需求主要表现在三个方面:一、海量数据在计算和存储单元之间的高速通信需求。这不但需要芯片具备强大的缓存和片上存储能力,而且还需要计算和存储单元之间有较大的通信带宽。二、专用计算能力需求高。深度学习算法中有大量卷积、残差网络、全连接等特殊计算需要处理,还需要提升运算速度,降低功耗。三、海量数据自身处理同样也对芯片提出了新的要求,尤其是非结构化数据的增多,对传统芯片结构造成了较大的压力。

通用 CPU 在深度学习中可用但效率较低。比如在图像处理领域,主要用到的是 CNN(卷积神经网络),在自然语言识别、语音处理等领域,主要用到的是 RNN(循环神经网络),虽然这两种算法模型有着较大的区别,但本质上都是向量和矩阵运算,主要是加法和乘法,辅助一些除法和指数运算。传统 CPU 可用于做上述运算,但是 CPU 还有大量的计算逻辑控制单元,这些单元在 AI 计算中是用不上的,造成了 CPU 在 AI 计算中的性价比较低。

深度研究 AI 芯片产业应用发展

2、GPU、FPGA 以及 ASIC 各有优劣,成为当前 AI 芯片行业的主流

正因为 CPU 在 AI 计算上的弱点,给了可以实现海量并行计算且能够对进行计算加速的 AI 芯片留下了市场空间。从广义上讲,面向 AI 计算的芯片都可以称为 AI 芯片,包括基于传统架构的 GPU、FPGA以及 ASIC(专用芯片),也包括正在研究但离商用还有较大差距的类脑芯片、可重构 AI 芯片等。

云端训练芯片市场较为集中,而推理市场云、边两端均有大量企业参与

按照部署位置划分,AI 芯片可以分为云端芯片和边缘端芯片。云端芯片部署位置包括公有云、私有云或者混合云等基础设施,主要用于处理海量数据和大规模计算,而且还要能够支持语音、图片、视频等非结构化应用的计算和传输,一般情况下都是用多个处理器并行完成相关任务;边缘端 AI 芯片主要应用于嵌入式、移动终端等领域,如摄像头、智能手机、边缘服务器、工控设备等,此类芯片一般体积小、耗电低,性能要求略低,一般只需具备一两种 AI 能力。

按照承担的任务分,AI 芯片可以划分为训练芯片和推理芯片。训练是指通过大量标记过的数据在平台上进行“学习”,并形成具备特定功能的神经网络模型;推理则是利用已经训练好的模型输入新数据通过计算得到各种结论。训练芯片对算力、精度要求非常之高,而且还需要具备一定的通用性,以适应多种算法的训练;推理芯片更加注重综合能力,包括算力能耗、时延、成本等因素。

综合来看,训练芯片由于对算力的特殊要求,只适合在云端部署,而且多采用的是“CPU+加速芯片”类似的异构模式,加速芯片可以是 GPU,也可以是 FPGA 或者是 ASIC 专用芯片。AI 训练芯片市场集中度高,英伟达和谷歌领先,英特尔和 AMD 正在积极切入。推理在云端和终端都可进行,市场门槛相对较低,市场参与者较多。云端推理芯片除了传统的英伟达、谷歌、赛灵思等芯片大厂外,Groq等国际新兴力量也在加入竞争,国内寒武纪、比特大陆也有不错表现;终端推理芯片市场较为分散,场景各异,参与者除了英伟达、英特尔、ARM 和高通之外,国内企业如寒武纪、地平线、云知声、云天励飞等在各自细分领域均有所建树。

深度研究 AI 芯片产业应用发展

深度研究 AI 芯片产业应用发展

GPU 擅长云端训练,但需与 CPU 异构、功耗高且推理效率一般

GPU(Graphics Processing Unit)是一种由大量核心组成的大规模并行计算架构,专为同时处理多重任务而设计的芯片。正是由于其具备良好的矩阵计算能力和并行计算优势,最早被用于 AI 计算,并在云端获得大量应用。GPU 中超过 80%部分为运算单元(ALU),而 CPU 仅有 20%,因此 GPU更擅长于大规模并行运算。以英伟达的 GPU TITAN X 为例,该产品在深度学习中所需训练时间只有CPU 的 1/10 不到。但 GPU 用于云端训练也有短板,GPU 需要同 CPU 进行异构,通过 CPU 调用才能工作,而且本身功耗非常高。同时,GPU 在推理方面需要对单项输入进行处理时,并行计算的优势未必能够得到很好的发挥,会出现较多的资源浪费。

深度研究 AI 芯片产业应用发展

▲CPU与GPU架构对比

深度研究 AI 芯片产业应用发展

FPGA 芯片算力强、灵活度高,但技术难度大国内差距较为明显

FPGA(Field-Programmable Gate Array)即现场可编程门阵列,该芯片集成了大量的基本门电路以及存储器,其灵活性介于 CPU、GPU 等通用处理器和专用集成电路 ASIC 之间,在硬件固定之前,允许使用者灵活使用软件进行编程。FPGA 在出厂时是“万能芯片”,用户可根据自身需求,用硬件描述语言对 FPGA 的硬件电路进行设计;每完成一次烧录,FPGA 内部的硬件电路就有了确定的连接方式,具有了一定的功能;输入的数据只需要依次经过各个门电路,就可以得到输出结果。

FPGA 应用于 AI 有以下优势:

(1)算力强劲。由于 FPGA 可以同时进行数据并行和任务并行计算,在处理特定应用时效果更加明显,对于某一个特定的运算,FPGA 可以通过编辑重组电路,生成专用电路,大幅压缩计算周期。从赛灵思推出的 FPGA 产品看,其吞吐量和时延指标都好于 CPU 和 GPU 产品。

(2)功耗优势明显。FPGA 能耗比是CPU的10倍以上、GPU的3倍。由于在 FPGA 中没有取指令与指令译码操作,没有这部分功耗;而在复杂指令集(X86)的 CPU 中仅仅译码就占整个芯片能耗的约 50%,在 GPU 里取指与译码也会消耗 10%至 20%的能耗。

(3)灵活性好。使用通用处理器或 ASIC 难以实现的下层硬件控制操作技术,利用 FPGA 可以很方便的实现,从而为算法的功能实现和优化留出了更大空间。

(4)成本相对 ASIC 具备一定优势。FPGA 一次性成本(光刻掩模制作成本)远低于 ASIC,在芯片需求还未成规模、深度学习算法暂未稳定需要不断迭代改进的情况下,利用具备可重构特性的FPGA 芯片来实现半定制的人工智能芯片是最佳选择。

正因为存在上述优势,FPGA 被广泛用于 AI 云端和终端的推理。国外包括亚马逊、微软都推出了基于 FPGA 的云计算服务,而国内包括腾讯云、阿里云均在 2017 年推出了基于 FPGA 的服务,百度大脑也使用了 FPGA 芯片。

从市场格局上看,全球 FPGA 长期被 Xilinx(赛灵思)、Intel(英特尔)、Lattice(莱迪思)、Microsemi(美高森美)四大巨头垄断。其中,赛灵思和英特尔合计占到市场的 90%左右,赛灵思的市场份额超过 50%,国内厂商刚刚起步,差距较大。

深度研究 AI 芯片产业应用发展

深度研究 AI 芯片产业应用发展

专用芯片(ASIC)深度学习算法加速应用增多,可提供更高能效表现和计算效率

ASIC(Application Specific Integrated Circuits),即专用芯片,是一种为特定目的、面向特定用户需求设计的定制芯片,具备性能更强、体积小、功耗低、可靠性更高等优点。在大规模量产的情况下,还具备成本低的特点。

ASIC 与 GPU、FPGA 不同,GPU、FPGA 除了是一种技术路线之外,还是实实在在的确定产品,而 ASIC 只是一种技术路线或者方案,其呈现出的最终形态与功能也是多种多样的。近年来,越来越多的公司开始采用 ASIC 芯片进行深度学习算法加速,其中表现最为突出的 ASIC 就是 Google 的TPU(张量处理芯片)。

TPU 是谷歌为提升 AI 计算能力同时大幅降低功耗而专门设计的芯片。该芯片正式发布于 2016 年 5月。TPU 之所以称为 AI 专用芯片,是因为它是专门针对 TensorFlow 等机器学习平台而打造,该芯片可以在相同时间内处理更复杂、更强大的机器学习模型。谷歌通过数据中心测试显示,TPU 平均比当时的 GPU 或 CPU 快 15-30 倍,性能功耗比(TFOPS/Watt)高出约 30-80 倍。

但是,ASIC 一旦制造完成以后就不能修改了,且研发周期较长、商业应用风险较大,目前只有大企业或背靠大企业的团队愿意投入到它的完整开发中。国外主要是谷歌在主导,国内企业寒武纪开发的 Cambricon 系列处理器也广泛受到关注。其中,华为海思的麒麟 980 处理器所搭载的 NPU 就是寒武纪的处理器 IP。

深度研究 AI 芯片产业应用发展

深度研究 AI 芯片产业应用发展

3、短期内 GPU 仍将是 AI 芯片主导,长期看三大技术路线将呈现并行态势

短期内 GPU 仍将主导 AI 芯片市场,FPGA 的使用将更为广泛

GPU 短期将延续 AI 芯片的领导地位。GPU 作为市场上 AI 计算最成熟、应用最广泛的通用型芯片,应用潜力较大。凭借其强大的计算能力、较高的通用性,GPU 将继续占领 AI 芯片的主要市场份额。

当前,两大 GPU 厂商都还在不断升级架构并推出新品,深度学习性能提升明显,未来应用的场景将更为丰富。英伟达凭借着其在矩阵运算上的优势,率先推出了专为深度学习优化的 Pascal GPU,而且针对 GPU 在深度学习上的短板,2018 年推出了 Volta 架构,正在完成加速-运算-AI 构建的闭环;AMD 针对深度学习,2018 年推出 Radeon Instinct 系列,未来将应用于数据中心、超算等 AI 基础设施上。我们预计,在效率和场景应用要求大幅提升之前,作为数据中心和大型计算力支撑的主力军,GPU 仍具有很大的优势。

深度研究 AI 芯片产业应用发展

FPGA 是短期内 AI 芯片市场上的重要增长点,FPGA 的最大优势在于可编程带来的配置灵活性,在当前技术与运用都在快速更迭的时期,FPGA 具有明显的实用性。企业通过 FPGA 可以有效降低研发调试成本,提高市场响应能力,推出差异化产品。在专业芯片发展得足够完善之前,FPGA 是最好的过渡产品,正因为如此,科技巨头纷纷布局云计算+FPGA 的平台。随着 FPGA 的开发者生态逐渐丰富,适用的编程语言增加,FPGA 运用会更加广泛。因此短期内,FPGA 作为兼顾效率和灵活性的硬件选择仍将是热点所在。

长期来看 GPU、FPGA 以及 ASIC 三大类技术路线将并存

GPU 主要方向是高级复杂算法和通用型人工智能平台。(1)高端复杂算法实现方向。由于 GPU 本身就具备高性能计算优势,同时对于指令的逻辑控制上可以做的更复杂,在面向复杂 AI 计算的应用方面具有较大优势。(2)通用型的人工智能平台方向。GPU 由于通用性强,性能较高,可以应用于大型人工智能平台够高效地完成不同种类的调用需求。

FPGA 未来在垂直行业有着较大的空间。由于在灵活性方面的优势,FPGA 对于部分市场变化迅速的行业最为实用。同时,FPGA 的高端器件中也可以逐渐增加 DSP、ARM 核等高级模块,以实现较为复杂的算法。随着 FPGA 应用生态的逐步成熟,FPGA 的优势也会逐渐为更多用户所认可,并得以广泛应用。

ASIC 长远来看非常适用于人工智能,尤其是应对未来爆发的面向应用场景的定制化芯片需求。ASIC的潜力体现在,AI 算法厂商有望通过算法嵌入切入该领域,以进入如安防、智能驾驶等场景。由于其具备高性能低消耗的特点,可以基于多个人工智能算法进行定制,以应对不同的场景,未来在训练和推理市场上都有较大空间。

4、国内外 AI 芯片市场需求将保持较快增长势头,云端、边缘均具备潜力

近年来,伴随着全球 AI 产业的快速增长,AI 芯片需求大幅上升。按照 Gartner 最新数据,2018 年全球 AI 芯片市场规模达到 42.7 亿美元。未来几年,全球各大芯片企业、互联网巨头、初创企业都将在该市场上进行角逐,预计到 2023 年全球市场规模将达到 323 亿美元。未来五年(2019-2023年)平均增速约为 50%,其中数据中心、个人终端、物联网芯片均是增长的重点。

深度研究 AI 芯片产业应用发展

相比之下中金公司研究部公布的一组数据则更为乐观,该数据显示,2017年,整体AI芯片市场规模达到62.7亿美元,其中云端训练AI芯片20.2亿美元,云端推理芯片3.4亿美元,边缘计算AI芯片39.1亿美元;到2022年,整体AI芯片市场规模将会达到596.2亿美元,CAGR57%,其中云端训练AI芯片172.1亿美元,CAGR 53.5%,云端推断芯片71.9亿美元,CAGR 84.1%,边缘计算AI芯片352.2亿美元,CAGR 55.2%。

深度研究 AI 芯片产业应用发展

国内人工智能芯片行业发展仍处在起步阶段。长期以来,我国在 CPU、GPU 和 DSP 设计上一直处于追赶状态,绝大多数芯片依靠国外的 IP 核进行设计,自主创新能力不足。但我们也看到,国内人工智能产业的快速发展,也为国内芯片产业实现换道超车创造了机会。由于国内外在芯片生态上并未形成垄断,国内芯片设计厂商尤其是专用芯片设计厂商,同国外竞争对手还处在同一起跑线上。

目前国内人工智能芯片市场呈现出百花齐放的态势。AI 芯片的应用领域广泛分布在金融证券、商品推荐、安防、消费机器人、智能驾驶、智能家居等众多领域,催生了大量的人工智能创业企业,如地平线、深鉴科技、寒武纪、云知声、云天励飞等。我们认为,未来随着国内人工智能市场的快速发展,生态建设的完善,国内 AI 芯片企业将有着更大的发展空间,未来 5 年的市场规模增速将超过全球平均水平。

在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏多智时代,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!

人工智能芯片 深度学习 芯片 人工智能 海量数据 存储能力
0