首页 首页 人工智能 查看内容

2014盘点之人工智能四巨头

木马童年 2019-2-13 21:50 154 0

2014年,人工智能得到了前所未有的关注, Eron Musk和霍金的“人工智能恶魔论”在学术界和产业界引发了激烈争论;资本对这个方向也是趋之若鹜,截止到2004年,有超过20亿美元的风险投资流入到基于认知技术研究的产品 ...

2014年,人工智能得到了前所未有的关注, Eron Musk和霍金的“人工智能恶魔论”在学术界和产业界引发了激烈争论;资本对这个方向也是趋之若鹜,截止到2004年,有超过20亿美元的风险投资流入到基于认知技术研究的产品和服务里,超过100家的相关公司被互联网巨头收购。而对于普通用户来说,只有当那些科技巨头在人工智能(人工智能将向何处去)领域实现布局,并将这些技术应用到具体的产品和服务中时,他们才能真正感受到人工智能带来的优势。而去年恰恰是这些科技巨头动作极其频繁的一年,接下来,本文将对谷歌、百度、Facebook和IBM四家科技公司在人工智能领域的布局和研究成果进行盘点。

谷歌

KK在谷歌创业初期跟拉里·佩奇聊过,已经有一个性能不错的搜索引擎,为什么还要做一个?拉里·佩奇说,不是要开发新的搜索引擎,我们要做的是人工智能。而对于“一家科技公司如何才能保住主导地位?” 佩奇认为,最好的方式就是投资未来。佩奇希望继续增强对未来科技的布局,继续以最不可思议的方式改变世界,而人工智能就是其中非常重要的一个方向。

2014盘点之人工智能四巨头

1) 对DeepMind的收购及后续运作

2014年年初,谷歌以4亿美元的架构收购了深度学习算法公司——DeepMind,公司创始人哈萨比斯是一位横跨游戏开发、神经科学和人工智能等多领域的天才人物。7月,谷歌以DeepMind为主体与牛津大学的两支人工智能研究队伍建立了合作关系。

DeepMind也很快发布了研究成果,它在10月份公布了一种新的模拟神经网络,旨在模仿人类大脑的工作记忆原理,拥有更加强大的归纳整理和联想演绎等逻辑处理能力,从而带来更快的任务处理速度,还可以通过训练去自行处理任务,这种全新的深度学习算法可用于计算机视觉和语音识别等领域。

2)自动驾驶汽车

奇点大学的网络与计算部门负责人Brad Templeton认为,在接下来的10-20年里最具改变世界潜力的技术是自动驾驶汽车,而谷歌在这方面要领先于传统汽车厂商。

此前,谷歌的自动驾驶汽车已经完成了总计70万英里的高速公路无人驾驶巡航里程。在此基础上,谷歌于7月份推出了100辆原型车来执行小规模的市区道路测试,这是自动驾驶行业首次进行的规模化城市道路测试。谷歌的原型车安装了17个感应装置,搜集来的信息能快速建立起一个半径200公尺的3D信息图,让车辆对外部环境进行分析判断,实现360度的全方位防护。谷歌预计在2014年底前打造200辆测试车,并在寻求与汽车制造商进行合作,计划五年内实现无人驾驶汽车的量产和投放市场。

3) 以Nest为基础的智能家居生态系统建设

谷歌于2014年1月份以32亿美元收购了智能家居制作商Nest,该公司主要提供智能恒温器和智能烟雾探测器,并已经拥有 100 多项专利,200 多项专利已在美国专利局备案,另有 200 多项专利准备备案。6月份,谷歌通过Nest花费5.55亿美元收购了基于云端的家庭监控公司Dropcam,10月份,又收购了智能家居中枢控制设备公司Revolv,该公司将参与Nest的开放计划“Works with Nest”。Nest对于产品的研发也是马不停蹄,于2014年年底一口气发布了四款产品,包括一款室内自动恒温计、两款网络监控摄像头和一款烟雾警报器。

谷歌已经意识到智能家居领域将是未来人工智能应用的一个重要市场,所以通过一系列并购、开放平台的建立、软件硬件一体化来打造这个生态系统,而Nest创始人Tony Fadell一篇文章的标题《欢迎回家》也反映出了谷歌在智能家居领域布局的前瞻性和决心。

4) 在图形识别和语音识别研究领域的重大进展

2014年,谷歌开始了开发一套能够整合公司海量数据的语音系统,这个正处在测试阶段将会使计算机从本质上“听懂”和“思考”人们向谷歌设备输入的语音。这个团队将前馈神经网络替换成了递归神经网络,提高了系统对语音信息的存储和处理能力,并能够使用上下文、物理定位及其它方式对谈话者的真正含义进行预测,就像人在谈话时大脑所做的一样。

在图像识别方面,谷歌在8月份收购了一家图片分析公司Jetpac。Google研究院也发表了一篇文章,表明未来Google的图形识别引擎不仅仅能够识别出照片的对象,还能够对整个场景进行简短而准确的描述。除此之外,谷歌一直在积极吸引图像识别和计算机视觉方面的专家参与到谷歌的项目研究中来,比如说向研究计算机视觉和模式识别的助理教授Devi Parikh授予了谷歌内部研究奖项Faculty Research Awards和 9万美元的无限制基金,并允许她直接同谷歌的其他研究者和工程师进行合作。

根据德勤发布的一份报告显示,Google在2014年将语音识别的精准度从2012年的84%提升到如今的98%,移动端Android系统的语音识别准确性提高了25%;计算机视觉技术也取得了突飞猛进的发展。如果以计算机视觉技术研究者设置的技术标准来看,自2010年到2014年,图像分类识别的精准度提高了4倍。

5)总结

总体看来,谷歌在人工智能的布局依然符合它“将全世界的信息联系起来并给出最佳处理结果”的使命,在这一目标下,谷歌的行为可以大致分成两个路径,第一是覆盖更多的用户使用场景,从谷歌传统业务覆盖的互联网、移动互联网延伸到智能家居、自动驾驶、机器人(2013年收购了8家机器人公司)等领域,从而抓取到更多信息,这可以看做是信息积累和输入的过程。第二个方面是不知疲倦的做好底层人工智能技术的积累,研发更加高级的深度学习算法,增强图形识别和语音识别能力,从而能对第一阶段收集到的信息进行更好的处理和反馈,这可以看做是信息的处理和用户服务的输出过程。在这两个过程下,谷歌就将人工智能渗透到了其各种产品的方方面面,从而为用户带来更多的使用场景和更加智能的功能。

在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏多智时代,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!

人工智能 认知技术 互联网 搜索引擎 未来科技 深度学习
0